Supplementary information for:

Efficient modification of λ -DNA substrates for single-molecule studies

Yoori Kim¹, Armando de la Torre¹, Andrew A. Leal¹, and Ilya J. Finkelstein^{1,2,*}

¹Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712

²Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712
* To whom correspondence should be addressed. Tel: 1-512-471-1394; e-mail: ifinkelstein@cm.utexas.edu

Keywords: DNA curtains, recombineering, single-molecule imaging, phage, nicking enzyme

Figure S1. yRFC has a mild preference for loading yPCNA at (CAG)₁₃ repeats relative to homoduplex dsDNA. (a) To determine whether the mild yPCNAyRFC(ATP γ S) enrichment at the (CAG)₁₃ was statistically significant, the DNA substrate was divided into eight 5 kb-wide windows (dashed lines). The first window (dark gray box) is partially obstructed by the Cr barriers. Windows containing the (CAG)₁₃ repeat are shown in pink. (b) Normalized binding distribution of yPCNA-yRFC(ATPγS) complexes on three DNA substrates containing a (CAG)₁₃. The binding histograms were also divided into 5 kb-wide windows (dashed lines). The window partially obscured by the Cr barrier is marked in dark gray, homoduplex DNA is gray, and the target-containing window is pink. A two-tailed t-test was used to compare the groupings of three windows-including the three (CAG)₁₃-containing window-against all homoduplex DNA windows. (c) A normalized histogram of all two-tailed t-tests comparing the mean yPCNA occupancy of all three-window combinations relative to the mean yPCNA occupancy in all windows containing homoduplex DNA. Over 97% of the tests showed no significance (p-value > 0.05). The highest p-values are shown in the inset and include the (CAG)₁₃-containing sites, as well as the partially obstructed first window. This is because the Cr barrier causes the first window to underestimates yPCNA binding. All pvalues in the p=0.001-0.05 range were from window groupings that included two of three $(CAG)_{13}$ repeat windows or window #1.

Figure S2. Characterization of yPCNA diffusion on homoduplex λ -DNA. (a) Representative single-molecule traces of the position of individual yPCNA molecules (shown in three different colors) on double-tethered DNA curtains at a total ionic strength I = 176 mM. (b) Mean squared displacement (MSD) of each of the molecules in (a). The MSDs are fit to a line, and the slopes are used to calculate the one-dimensional diffusion coefficients (solid lines). (c) Mean yPCNA diffusion coefficients as a function of the ionic strengths (error bars: S.E.M; to N = 30, 29, 29, 31 for 76 mM, 176 mM, 326 mM, and 525 mM ionic strengths, respectively). The red line indicates a linear fit through the data with a slope of 0.25 ± 0.06 μ m² (sec mM)⁻¹. The error in the slope represents the standard error of the fit. These results are consistent with a single-molecule study that looked at hPCNA diffusion on homoduplex DNA¹. Diffusion of both hPCNA and yPCNA was weakly dependent on the ionic strength (0.33 ± 0.04 μ m² sec⁻¹ mM⁻¹ and 0.25 ± 0.06 μ m² for hPCNA and yPCNA, respectively).

Figure S3. yPCNA diffusion on DNA substrates containing $(CAG)_{13}$ repeats. (a) Representative kymographs of diffusing yPCNA on DNA having $(CAG)_{13}$ at flipped site A or at (b) site B. Dashed lines indicate the position of a $(CAG)_{13}$ repeat. Arrows: yPCNA is blocked by the $(CAG)_{13}$ structure. (c) Percentage of molecules showing either bypass, blocked, or captured behavior at $(CAG)_{13}$ inserts. At least 35 DNA molecules were analyzed and classified into each of three categories (N=36, 62, and 46 for site A (from Fig. 5d), flipped site A, and site B). A chi-squared test shows that the distribution of yPCNA behaviors at each of the three $(CAG)_{13}$ -containing DNAs is statistically indistinguishable (p-value = 0.95).

Supplemental DNA Sequences

Complete DNA sequences for each of the six plasmids in Figure 1 are also available via Benchling: <u>https://benchling.com/ifinkelstein/</u> Legend: bold: homology for λ -DNA orange: LacO blue: Kanamycin resistance cassette green: three BspQI sites restriction sites: <u>NcoI</u> is double-underlined and <u>NotI</u> site is single-underlined.

Recombineering cassette for site A

CGGGAATGATCCAGATTTTGCTACCACCATGACTAACGCGCTTGCGGGTAAACAACCGAAGAATGCGACAC TGACGGCGCTGGCAGGGCTTTCCACGGCGAAAAATAAATTACCGTATTTTGCGGAAAATGATGCCGCCAGC CTGACTGAACTGACTCAGGTTGGCAGGGATATTCTGGCAAAAAATTCCGTTGCAGATGTTCTTGAATACCT TGGGGCCGGTGAGAATTCGGCCTTTCCGGCAGGTGCGAGCATTGCTACGGCGATTCCTAGAATTGTGAGC TGGTGCGATCGCTCTTCGGGATTTAAATAGGTACCTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGG CGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGATGG CGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCA CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCT TGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCCGAAGTGCCGGGGCAGGATCTCC TGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTT CGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGC GTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACAT AGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACG GTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGA**TTTCGTCAT** ATACATTTTTGATTATTATTTGAATCAATTCCAATTACCTGAAGTCTTTCATCTATAATTGGCATTGTATG TATTGGTTTATTGGAGTAGATGCTTGCTTTTCTGAGCCATAGCTCTGATATCCAAATGAAGCCATAGGCAT TTGTTATTTTGGCTCTGTCAGCTGCATA

Recombineering cassette for site B

TGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGAC CGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTT CCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCT TCTGAGCTAGCAATTAATGTGCATCGATTATCAGCTATTGCCAGCGCCAGATATAAGCGATTTAAGCTAAG AAAACGCATTAAGATGCAAAACGATAAAGTGCGATCAGTAATTCAAAAACCTTACAGAAGAGCAATCTATGG TTTTGTGCGCAGCCCTTAATGAAGGCAGGAAGTATGTGGTTACATCAAAACAATTCCCATACATTAGTG

Recombineering cassette for site C

ACATCAAAGCAGTCTGTCAGTCAGTGCGTGAAGCCACCACCGCCTCCGGCGTGGATAATGCAGCCTCCCCC **GGAAGGAACCCAGAAGTATATTAATGAGCAGTGCAGATAGAGTTGCCCATATCGATGG**CTCGAGTAGTGCA GCCCTAGAATTGTGAGCGCTCACAATTCTAGACTCGATGACGCCGCCGCTATGGACAGCCAAGCGAACCGGA ATTGCCAGCTGGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGC CAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATGAA CAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACA GACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTGTCAAGA GTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCC GGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGC ACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGA ACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCT TGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGAC CGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTT CCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCT TCTGAGCTAGCCTCTGGAAGCATTCAGAGCAATTGAGGCAGCGTTGGTGAAGCACGATAATAATAATGAAGG **ATTATTCCCTGGTGGTTGACTGATCACCATAACTGCTAATCATTCAAACTATTTAGTCTGTGACAGAGCCA** ACACGCAGTCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGCCCTCGTAATTAA

Nickase cassette

ATTTAAATAAAGCTCTTCATGCATGCGGCCGCCCTCTTC<u>CCATGG</u>TGCGATCGCTCTTCGGGATTTAAATA

Name	Sequence
AD006	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
YK105	/5Phos/TGCATGCGGCCGCTCTTCCT CAGCAGCAGCAGCAGCAGCAGCA GCAGCAGCAGCAGCAGATGGTGCGATCGCTCTTCG
MB032	/5Phos/TGCATGCGGCCGCTCTTCCCATGGTGCGATCGCTCTTCG
AD012	AGTCTGGATAGCCATAAGTG
AD013	GTAACCACATACTTCCTGCC
AD016	GCAGTCTGTCAGTGCG
AD017	CGAGGGCATTGCAGTAATTG
AD022	CGTTCATGGCTGAACTCCTG
AD023	CGGCATAACATGCAGTGGAC
AD024	GTGATGTTGCTGCGCTCGATG
AD025	CTCAGCCTGGGTCATTGAAG
AD027	GCTACCACCATGACTAACGC
AD028	GGATATCAGAGCTATGGCTC
AD031	CCGCGATTGCAGATGTTATC
AD032	CTATACAGCCAAGCTTGCAG
IF001	/5Phos/GGGCGGCGACCT/3BioTEG
IF002	/5Phos/AGGTCGCCGCCC/3Dig_N
IF003	/5Phos/AGGTCGCCGCCC/3BioTEG
IF004	/5Phos/GGGCGGCGACCT/3Dig_N
YK_PC NA01	/5phos/GATGACGACAAGCATCATCATCAT
YK_PC NA02	GTCTTTGTAGTCGCTGCTGCTGCCCATGGTAT

Table S1. Oligonucleotides used in this study

** The nucleotides for 5'-ssDNA flap or $(CAG)_{13}$ are shown in **bold**. ** The complementary nucleotides to λ -DNA are shown in blue.

References

1. Kochaniak, A. B. et al. Proliferating cell nuclear antigen uses two distinct modes to move along DNA. J Biol Chem 284, 17700–10 (2009).